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SUMMARY

The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes,
estuaries, and oceans. While this assumption is valid in many cases and has been successfully used
in numerous studies, there are many cases where this assumption is questionable. This paper presents
a three-dimensional, hydrodynamic model for free-surface �ows without using the hydrostatic pressure
assumption. The model includes two predictor–corrector steps. In the �rst predictor–corrector step, the
model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure
�eld at the new time step. Based on the estimated pressure �eld, an intermediate velocity �eld is
calculated, which is then corrected by adding the non-hydrostatic component of the pressure to the
estimated pressure �eld. A Poisson equation for non-hydrostatic pressure is solved before the second
intermediate velocity �eld is calculated. The �nal velocity �eld is found after the free surface at the
new time step is computed by solving a free-surface correction equation.
The numerical method was validated with several analytical solutions and laboratory experiments.

Model results agree reasonably well with analytical solutions and laboratory results. Model simulations
suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three-
dimensional, free-surface �ows. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: hydrostatic; non-hydrostatic; free-surface �ows; 3-D hydrodynamic model; �nite di�erence
method; predictor–corrector procedure; free-surface correction (FSC) method

1. INTRODUCTION

The hydrostatic pressure assumption has been widely used in studying �ows in rivers, lakes,
estuaries, and oceans. This assumption is valid in most cases and has be successfully used in
many popular three-dimensional, hydrodynamic models such as the Princeton Ocean Model [1],
the Curvilinear Hydrodynamic 3-D model [2], the Environmental Fluid Dynamic Code [3],
etc. The basic idea of this assumption comes from the fact that due to a much smaller vertical
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length scale in comparison with the horizontal length scales, the acceleration and eddy vis-
cosity terms in the momentum equation for the vertical velocity component are much smaller
than the gravitational acceleration and can thus be neglected. Nevertheless, there are many
cases where this assumption may be questionable. One example is the �ow induced by a
strong horizontal density gradient. Other examples include short waves, �ows controlled by
structures, and near-�eld problems (e.g. the brine disposal from a desalination plant, the up-
take point of a water withdrawal system, etc.). In all these cases, e�ects of non-hydrostatic
pressure on �ow may be comparable to hydrostatic pressure, and thus cannot be neglected in
model simulations.
There exist only a limited number of 3-D models that are capable of including non-

hydrostatic pressure in the simulation. Casulli’s semi-implicit model is one of them [4; 5].
Mahadevan et al. [6] developed a non-hydrostatic mesoscale ocean model that used the sim-
ilar solution procedure as that of Casulli’s model, although the former used a control volume
method, while the latter used a �nite di�erence method. Jankowski [7] modi�ed an exist-
ing �nite element code by adding non-hydrodynamic component to it. Recently, Ko�cyigit
et al. [8] developed a non-hydrostatic model that follows the same procedure as that of Cas-
suli and Mahadevan et al., but uses the so-called sigma-co-ordinate in the vertical direction
to discretize the water depth. All these non-hydrostatic models employ an operator-splitting
(fractional step) technique that splits the di�erential operator in the momentum equation into
several parts according to their physical processes. The original momentum equation is thus
split into a few simpler equations, each containing only portion(s) of all physical processes.
The original momentum equation is then treated as the summation of the simpler equations.
One of the simpler equations considers only the non-hydrostatic e�ects.
This study developed a fully hydrodynamic model for three-dimensional, free-surface �ows

with a slightly di�erent approach. The Reynolds averaged Navier–Stokes (RANS) equations
are solved using a double predictor–corrector procedure. In the �rst predictor–corrector step,
an intermediate velocity �eld is predicted using the hydrostatic pressure �eld at the previous
time step. It is then corrected after a Poisson equation for non-hydrostatic pressure is solved.
The equation for non-hydrostatic pressure is obtained by forcing the velocity �eld divergence-
free. The corrected velocity �eld with the consideration of non-hydrostatic pressure is further
corrected in the second predictor–corrector step after a free-surface correction (FSC) method
is used to �nd the location of the �nal free-surface elevation. In this simulation procedure,
the hydrostatic simulation is a special case and can be carried out without performing the �rst
predictor–corrector step.
The numerical scheme was tested with two analytical solutions, including a deepwater

standing wave and a second mode seiching in a rectangular basin with �nite amplitude. It
was also tested with laboratory experiments that were used to validate some previous non-
hydrostatic models [5; 7], including a so-called lock-exchange case where the baroclinic force
is pivotal and a steep wave propagating over a bar. The model was run both with and without
the non-hydrostatic e�ects for all four test cases. Because non-hydrostatic e�ects in these cases
are important, model runs with the consideration of non-hydrostatic pressure generated much
better model results than those generated by model runs without the non-hydrostatic e�ects.
In the following, governing equations for free-surface �ows are �rst presented before the

numerical scheme is described. Tests of the numerical scheme using two analytical solutions
and some laboratory experiments are then given. Model results and their comparisons with
analytical solutions and laboratory experiments are discussed, before conclusions are drawn.
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2. GOVERNING EQUATIONS

The model solves the following RANS equations, including the continuity and momentum
equations
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where t is time; x, y, and z are Cartesian co-ordinates (x is from west to east, y from south
to north, and z vertical pointing upward); u, v, and w are velocities in the x-, y-, and, z-
directions, respectively; g, �, �, and p denote the gravitational acceleration, the free-surface
elevation, density, and pressure, respectively; Ah and Av represent horizontal and vertical eddy
viscosities, respectively; and f (=2� sin�, where � is the angular rotation velocity of the
earth and � is the latitude) is the Coriolis parameter. For very large open water bodies at
the low latitude (e.g. the Gulf of Mexico), Mahadevan et al. [6] found that the Coriolis
acceleration component in the vertical direction should be included in Equation (4). The
inclusion of the vertical Coriolis force in the equation is straightforward and irrelevant to the
double predictor–corrector procedure that will be presented in the next section. For simplicity,
the Coriolis acceleration in the vertical direction and the Coriolis e�ects due to the vertical
velocity are not included in the above equations of motion.
The model also solves the following transport equation of concentration (e.g. salinity, tem-

perature, suspended sediment concentration, etc.):
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where c is concentration, Ss represents source=sink terms, and Bh and Bv represent horizontal
and vertical eddy viscosities, respectively.
In Equations (2)–(5), the horizontal eddy viscosity and di�usivity (Ah and Bh) are computed

from a sub-grid scale model [9], while the vertical eddy viscosity and di�usivity (Av and Bv)
are calculated by solving the turbulent kinetic energy equation from the velocity gradient [10].
If the concentration simulated involves settling, w in Equation (5) includes the settling velocity
of the substance.
Integration equation (1) over the water column yields
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where � is the surface elevation; h0 is the bottom elevation; and r is the net rain intensity
(rainfall minus evaporation).
Boundary conditions in the horizontal directions are speci�ed with either free-surface el-

evations or velocities for open boundaries. At solid boundary, both the velocity component
and the pressure gradient in the normal direction are set to zero. Boundary conditions spec-
i�ed in the vertical direction are shear stresses. At the free surface, wind shear stresses are
used. At the bottom, the loglayer distribution of velocity is used to calculate the bottom shear
stresses, or

(�x; �y)=�
[

�
ln(zb=zo)

]2√
u2b + v

2
b(ub; vb) (7)

where � is the von Karman constant (0.41); ub and vb are horizontal velocities calculated
at a level zb near the bottom; zo= ks=30 and ks is the bottom roughness. Density in above
equations is a function of temperature (T ) and salinity (s) [11]:

�=�(T; s) (8)

Pressure in Equations (2)–(4) includes both the hydrostatic (ph) and non-hydrostatic (pn)
components. The hydrostatic component is obtained from Equation (4) by neglecting all the
terms on the left hand side and the turbulent mixing terms on the right hand side:

ph = g
∫ �

z
� d� (9)

Therefore
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z
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Using the Leibnitz integration law and the Boussinesq approximation, Equations (2)–(4)
become
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where �o is the reference density and H is an operator including the convective terms and
the horizontal eddy di�usivity terms. In the above equations, terms containing the horizontal
free-surface gradients are the barotropic terms, while those containing the horizontal density
gradients are baroclinic terms.
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Figure 1. A Cartesian grid system used in the model with a staggered arrangement
of model variables. The top-left graph is a view looking north, while the top-right

and bottom graphs are views looking west and downward, respectively.

3. A DOUBLE PREDICTOR–CORRECTOR PROCEDURE

The numerical approach for solving the above equations is a �nite di�erence scheme that
involves two predictor–corrector steps. The model was developed in a Cartesian grid system
with N1, N2, and N3 grid cells in the west-east, south-north, and vertical directions, respec-
tively. A staggered arrangement of model variables was used in the model. Figure 1 shows
the horizontal and vertical views of the computational stencil in Cartesian co-ordinates. In
Figure 1, �x, �y, and �� are grid sizes in x-, y-, and z-directions, respectively and i, j,
and k are grid indexes in the three directions. While �x varies only with i, �y varies only
with j. �� denotes the thickness of the horizontal layer, which is constant for the same
k-index. To �t the bottom topography and the free surface, �z for the actual cell height
is used in the computation. Except for the bottom and top layers, �z is the same as ��,
the layer thickness. For the bottom layer, �z is the distance between the top of the bottom
layer and the real bottom. Similarly, for the top layer, �z is the distance between the free
surface and the bottom of the top layer. As a result, �z is generally not the same as ��
for both the bottom and top layers. Because the centres of two neighbouring bottom cells are
not necessarily at the same z-level, some numerical di�usion can be introduced in calculating
horizontal gradients. To reduce the numerical di�usion, values at the centre of the bottom
cell are interpolated to the centre of the layer before horizontal gradients are calculated. To
ensure the vertical resolution near the free surface, the k-index for the top layer is allowed to
vary with horizontal location and time. This eliminates the use of a thick top layer to cover
the free-surface variation and allows the surface to travel from one layer to another. At each
time step, the k-index for the top layer (km) is calculated and saved. If the free surface at the
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(n+ 1)th time step drops below the middle point of the top layer, the top cell is aggregated
to the cell below it and km is reduced by 1. On the other hand, if the free surface at the new
time step is higher than the middle point of Layer km + 1, the top cell at the previous time
step is split into two cells and the top one is the new top cell at the new time step.
With a staggered arrangement of model variables, u and v are computed at the centres of

the east and north faces of the cell, respectively, while w is computed at the centre of the
top face. Density (�), pressure (p), and the concentration are computed at the centre of the
cell. The surface elevation (�) and water depth (D) are de�ned at the centre of the horizontal
grid.
The model uses the following �nite di�erence scheme to solve Equations (11)–(13):

un+1i+1=2; j; k − uni+1=2; j; k
�t

=−g
[
(1− �) @�

n

@x
+ �

@�n+1

@x

]
− g
�o

∫ �

z

@�n

@x
d�− 1

�o
@pn+1n

@x

+fvn+i+1=2; j; k +H(u
n) +

@
@z

(
Av
@un+1

@z

)
(14)

vn+1i; j+1=2; k − vni; j+1=2; k
�t

=−g
[
(1− �) @�

n

@y
+ �

@�n+1

@y

]
− g
�o

∫ �

z

@�n

@y
d�− 1

�o
@pn+1n

@y

−fun+i; j+1=2; k +H(vn) +
@
@z

(
Av
@vn+1

@z

)
(15)

wn+1i; j; k+1=2 − wni; j; k+1=2
�t

=−@p
n+1
n

@z
+H(wn) +

@
@z

(
Av
@wn+1

@z

)
(16)

where �t is the time step, n represents the nth time step; � is a parameter representing the
implicitness (� varies between 0 and 1); H is a �nite di�erence operator for the convective
terms and the horizontal eddy di�usivity terms.
In Equations (14)–(16), the non-hydrostatic pressure gradients and vertical eddy viscosity

terms are discretized implicitly, while the water surface elevation gradients are discretized
semi-implicitly with the implicitness �. The semi-implicit treatment of the barotropic terms is
necessary in order to avoid the time step being limited by the celerity of gravity waves and to
reduce numerical dissipation. A fully explicit discretization of the barotropic terms (�=0) is
undesirable even when the newly calculated velocity �eld is used to calculate the free-surface
elevation (i.e. use un and vn to calculate �n and use un+1 and vn+1 to calculate �n+1), because
the scheme will be constrained by the Courant number, de�ned as Cr =�t

√
gD=�x where D

is the water depth. With the free-surface elevation being calculated using the newly available
velocity �eld, the scheme is stable only when Cr is not larger than 1 if the barotropic terms
are treated fully explicitly. On the other hand, a fully implicit discretization (�=1) of the
barotropic terms is quite dissipative [12], even though it has the advantage of being indepen-
dent of the celerity of the gravity waves, or the Courant number can be larger than 1. The
general guideline for choosing the implicitness parameter (�) is: the scheme is unconditional
stable with respect to gravity waves if �¿0:5, and the numerical dissipation reduces as � is
reduced from 1 to 0.5 [12].
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Horizontal viscous terms in Equations (14)–(16) are treated explicitly. The Coriolis term
is marked with the superscript ‘n+’, which means that the newest available velocity compo-
nent is always used in the computation. For example, when new u is �rst calculated from
Equation (14), old v is used; however, when v is calculated from Equation (15), newly cal-
culated u is used. To avoid that the calculation of v always uses a newer u-velocity, u and
v are calculated in an alternate sequence: First calculate u then v at the odd time step, but
reverse the sequence at the even time step.
It is rather cumbersome to directly solve Equations (14)–(16). In this paper, it is proposed

to use two predictor–corrector steps to solve Equations (14)–(16). In the �rst predictor–
corrector step, the hydrostatic pressure �eld at the previous time step is assumed to be the
initial estimate of the total pressure �eld. In other words, the following equation is �rst solved:
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where the subscript n++ denotes that the velocity �eld is an intermediate one because the
pressure �eld is an estimated one.
In solving the above equations, the wind shear stresses speci�ed at the free surface and

the bottom shear stresses speci�ed at the bed are Neumann-type boundary conditions. While
the wind shear stresses are discretized at the half time step, the bottom shear stresses are
discretized implicitly:[
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where �wx and �wy denote wind shear stresses in the x- and y-directions, respectively; and ��
is the density at the free surface.
The velocity �eld solved (predicted) from Equations (17)–(19) does not necessarily sat-

isfy the continuity equation for incompressible �ows, because the hydrostatic pressure �eld
at the nth time step is used in the equation. It is assumed that the velocity �eld will be
divergence-free if the non-hydrostatic pressure gradients are added to Equations (17)–(19).
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In other words, the velocity �eld calculated from the following equation will be divergence-
free:
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Subtracting Equations (17)–(19), respectively, from Equations (22)–(24), the following equa-
tions for the velocity corrections (un+

∗ − un++, vn+∗ − vn++, and wn+∗ − wn++) are obtained:
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Taking x-, y-, and z-derivatives on both sides of the above three equations, respectively
and adding them together, one obtains a Poisson equation for the non-hydrostatic pressure at
the new time step as follows:

∇2pn+1n =
�o
�t
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where ũ=∇ · (un++1 i + un++2 j + un++3 k), or the divergence of the �rst intermediate velocity
�eld.
The model solves the above elliptic equation with the following boundary conditions for

pn+1n : at the solid boundary (lateral and bottom), the normal gradient of pn+1n is zero; at the
open boundary, pn+1n is either given or assumed to have a zero gradient; at the free surface,
pn+1n is assumed to be zero.
Starting from the southwest corner of the computation domain and doing a three-dimensional

loop, Equation (28) can be written for each grid cell, forming a seven-diagonal matrix sys-
tem with a known right hand side after the �rst intermediate velocity �eld is solved. The
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seven diagonals are saved in seven one-dimensional arrays using an index l=(k − 1)NxNy +
( j−1)Nx+ i, where Nx and Ny are total numbers of grids in x- and y-directions, respectively.
The seven-diagonal matrix system will take the following form:
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If the grid sizes are uniformly distributed, the seven-diagonal matrix of Equation (29) is
positive de�nite and can be solved using the conjugate gradient method with incomplete
Cholesky preconditioning [13]. If the grid sizes are not uniformly distributed in the computa-
tion domain, the seven-diagonal matrix is generally asymmetric. In this case, the biconjugate
gradient method can be used to solve the matrix. In this paper, a variant of the biconju-
gate gradient method called Bi-CGSTAB method [14] is used. The Bi-CGSTAB method can
provide relatively uniform convergence for non-symmetric matrices.
Once the non-hydrostatic pressure component at the new time step is solved, the in-

termediate velocity �eld calculated from Equations (17)–(19) can be corrected by using
Equations (25)–(27). The newly corrected velocity �eld (un+

∗
) satis�es the continuity equa-

tion for incompressible �ows. To get the �nal solutions to Equations (14)–(16), the second
predictor–corrector step is carried out using a FSC method [15]. The free-surface location at
the (n+ 1)th time step will also be found in the second predictor–corrector step.
Subtracting Equations (22)–(23) from Equations (14)–(15), respectively, the following

second set of velocity-correction equations can be obtained:

un+1i+1=2; j; k − un+
∗

i+1=2; j; k=−�tg� @(�
n+1 − �n)
@x

+�t
@
@z

[
A
@(un+1 − un+∗

)
@z

]

vn+1i; j+1=2; k − vn+
∗

i; j+1=2; k=−�tg� @(�
n+1 − �n)
@y

+�t
@
@z

[
A
@(vn+1 − vn+∗

)
@z

] (31)

Integrating the above equation over the water column at the east and north faces of the
grid yields

Un+1
i+1=2; j −Un+∗

i+1=2; j=−g�t� @(�
n+1 − �n)
@x

Ani+1=2; j

V n+1i; j+1=2 − Vn+
∗

i; j+1=2=−g�t� @(�
n+1 − �n)
@y

Ani; j+1=2

(32)
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where Ani+1; j and A
n
i; j+1=2 are total areas of the east and north faces of the water column for a

horizontal grid with the indexes i and j at the nth time step; and Ui+1=2; j and Vi; j+1=2 are total
mass �uxes through the east and north faces of the grid:

Ui+1=2; j=
kum∑
k=kun

ui+1=2; j; kani+1=2; j; k ; Vi; j+1=2 =
kvm∑
k=kvn

vi; j+1=2; kani; j+1=2; k (33)

where ani+1=2; j; k and a
n
i; j+1=2; k are areas of the east and north faces, respectively, of the cell with

the indexes i, j, and k at the previous time step; kun and kum are, respectively, the bottom and
top k-indexes at the east face of the grid; and kvn and kvm are the bottom and top k-indexes
at the north face of the grid. Notice that the vertical eddy viscosity terms are not included in
Equation (32). The reason for this is that the internal shear stresses are canceled out in the
integration and the same wind shear stresses and bottom shear stresses are used to specify
the Neumann-type boundary conditions for (un+1; vn+1) and (un+

∗
; vn+

∗
) at free surface and

the bed, respectively.
The vertically integrated continuity equation, Equation (6), is discretized using the following

semi-implicit scheme with the implicitness �:

��i; j = �n+1i; j − �ni; j=−�t(1− �)
a�i; j

[Un
i+1=2; j −Un

i−1=2; j + V
n
i; j+1=2 − Vni; j−1=2]

− �t�
a�i; j

[Un+1
i+1=2; j −Un+1

i−1=2; j + V
n+1
i; j+1=2 − Vn+1i; j−1=2] + �t r

n+1=2
i; j (34)

where �� (= �n+1 − �n) is the �nal increment of the free surface over the time step �t and
a�i; j is the wet surface area of the horizontal grid with the indexes i and j at the previous
time step.
Combining Equations (32) and (34), one obtains

�n+1i; j − �n+∗
i; j =

g�t2�2

a�i; j

[
Ani+1=2; j

��i+1; j −��i; j
�xi+1=2

− Ani−1=2; j
��i; j −��i−1; j

�xi−1=2

+Ani; j+1=2
��i; j+1 −��i; j

�yj+1=2
− Ani; j−1=2

��i; j −��i; j−1
�yj−1=2

]
(35)

where �n+
∗

i; j is an intermediate free-surface elevation calculated from the velocity �eld at the
previous time step and the intermediate velocity �eld (un+

∗
; vn+

∗
) with the following semi-

implicit discretization:

�n+
∗

i; j = �ni; j −
�t(1− �)
a�i; j

[Un
i+1=2; j −Un

i−1=2; j + V
n
i; j+1=2 − Vni; j−1=2]

− �t�
a�i; j

[Un+∗
i+1=2; j −Un+∗

i−1=2; j + V
n+∗
i; j+1=2 − Vn+

∗
i; j−1=2] + �t r

n+1=2
i; j (36)
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Equation (35) can be seen as a free-surface correction equation [15], which adjusts the
intermediate free-surface elevation by the amount of the right hand side of the equation.
Equation (35) can be written as

−Rsi; j��i; j−1 − Rwi; j��i−1; j + (1 + Rsi; j + Rwi; j + Rei; j + Rni; j)��i; j − Rei; j��i+1; j
−Rni; j��i; j+1 = �n+

∗
i; j − �ni; j

(37)

where

Rwi; j=
g�t2�2

a�i; j�xi−1=2
Ai−1=2; j ; Rei; j=

g�t2�2

a�i; j�xi+1=2
Ai+1=2; j

Rsi; j=
g�t2�2

a�i; j�yj−1=2
Ai; j−1=2; Rni; j=

g�t2�2

a�i; j�yj+1=2
Ai; j+1=2

(38)

For an open boundary grid where the water level is known, the Dirichlet-type boundary
condition is used: ��= �n+1 − �n. For a solid boundary or an open boundary where the �ow
rate is given, the Neumann-type boundary condition is used with a zero gradient of �� in
the normal direction.
Equation (37) forms a �ve-diagonal matrix system similar to the seven-diagonal matrix

system of Equation (29). For a uniformly distributed mesh, the �ve-diagonal matrix is posi-
tive de�nite and can be solved using the conjugate gradient method with incomplete Cholesky
preconditioning [13]. If the grid sizes are not uniformly distributed in the computation domain,
the Bi-CGSTAB method is used. The solution to Equation (37) gives the �nal free-surface lo-
cation. The �nal velocity components in the x- and y-directions are calculated as follows [15]:

un+1i+1=2; j; k=u
n+∗
i+1=2; j; k −�tg�

@(�n+1 − �n)
@x

vn+1i; j+1=2; k=v
n+∗
i; j+1=2; k −�tg�

@(�n+1 − �n)
@y

(39)

It should be pointed out that Equations (39) and (31) are identical because un+1i; j; k and
vn+1i; j; k calculated from Equation (39) obviously satisfy Equation (31). This means that the
second correction of the horizontal velocity components simply gives the second intermedi-
ate values some displacements determined by the second terms on the right hand side of
Equation (39) [15].
The �nal vertical velocity is calculated as follows:

wn+1i; j; k+1=2 =
ai; j; k−1=2
ai; j; k+1=2

wn+1i; j; k−1=2 +
Un+1
i−1=2; j; k −Un+1

i+1=2; j; k + V
n+1
i; j−1=2; k − Vn+1i; j+1=2; k

ai; j; k+1=2
(40)

where ai; j; k+1=2 is the area of the top face of the cell with the indexes i, j, and k.
The above double predictor–corrector procedure for solving the �nal velocity �eld and the

free-surface location at the (n+ 1)th time step can be summarized as follows:

1. Calculate the �rst intermediate velocity �eld (un++; vn++; wn++) using Equations (17)–
(19), and save the results to 3-D arrays u, v, and w in the model,
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2. Calculate the divergence of the newly calculated velocity �eld,
3. Solve the Poisson equation for non-hydrostatic pressure (pn+1n ),
4. Calculate the second intermediate velocity �eld (un+

∗
; vn+

∗
; wn+

∗
) using Equations

(22)–(24), and save the results to the 3-D arrays u, v, and w (un++, vn++ and wn++ in
the arrays are replaced by un+

∗
; vn+

∗
, and wn+

∗
, respectively),

5. Calculate the intermediate free-surface elevation using Equation (36) with the velocity
�eld at the previous time step and horizontal velocity components saved in arrays u
and v,

6. Solve Equation (37) to obtain the change of the free-surface elevation over the time step
�t.

7. Calculate the �nal velocity �eld using Equations (39) and (40).

During the model run, if Steps (2)–(4) are omitted, then the simulation does not include
non-hydrostatic pressure, or the model run is a hydrostatic simulation. Obviously, there is no
need to compute wn++ in the �rst step for a hydrostatic simulation. Also, in calculating the
intermediate free-surface elevation using Equation (36), un++ and vn++ are treated as un+

∗

and vn+
∗
if non-hydrostatic pressure is not included.

After the �nal velocity �eld and the free-surface location at the (n + 1)th time step are
found, the transport equation is solved. The numerical scheme used in the model for the
transport equation is a �ux-based �nite di�erence scheme and takes the following form

cn+1i; j; k − cni; j; k
�t

= SS +
1
–Vni; j; k

[
�Fnx +�F

n
y +�F

n
z +�f

n
x +�f

n
y

+ ani; j; k+1=2B
n
v i; j; k+1=2

cn+1i; j; k+1 − cn+1i; j; k

�znk+1=2
− ani; j; k−1=2Bnv i; j; k−1=2

cn+1i; j; k − cn+1i; j; k−1
�znk−1=2

]
(41)

where –Vni; j; k is the water volume of the cell (varies with time for the top cell), �F
n
x , �F

n
y ,

and �Fnz represent explicit discretizations of net advective �uxes of the material entering cell
(i; j; k) in the x-, y-, and z-directions, respectively; and �fnx and �f

n
y are net di�usive �uxes

of the concentration �owing into the cell from the x- and y-directions, respectively. Equation
(33) is a tri-diagonal system and can be easily solved by the Thomas algorithm.

4. TESTS OF THE NUMERICAL SCHEME

The numerical method presented in the above section was tested with several analytical so-
lutions and laboratory experiments. The �rst test is a two-dimensional, deepwater standing
wave case in a rectangular basin with a depth of 10 m and a length of 10 m. The oscillation
is caused by the following sinusoidal free-surface set-up at time=0:

�=10 + a cos
(	
l
x
)

(42)

where � is the free-surface elevation in meters (measured from the bottom of the basin);
l is the length of the basin (10 m); and a is the wave amplitude (0:15 m).
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The model used a uniform grid spacing of 0:2m in the horizontal directions. In the vertical
direction, the grid spacing varies between 0.1 and 0:3 m. From the dispersion relationship
(
2 = gk tanh(kD), where 
=2	=T , k=2	=L, T is the wave period, L=2lx is the wave
length, and D is the average water depth), the wave period is calculated to be T =3:59 s.
Because this is a deepwater wave problem with small amplitude, the �rst order solution is
accurate enough. Analytical solutions for this standing wave are [16]

�=10 + a cos kx cos
t (43)

(u; w) = a

sin 
t
sinh kD

(sin kx cosh kz;− cos kx sinh kz) (44)

where z is the vertical co-ordinate (z=0 is at the bottom of the basin and z=D is at the
average water level); and u and w are velocities in the x- and z-directions, respectively.
The model was run for 10 s with a time step of 0:1 s. Time series of simulated surface

elevations were printed out at x=0:1 and 5:5m. Also printed out were time series of velocities
at two locations. The �rst location is at x=0:1 m and z=8:9 m, while the second one is at
x=5:5 m and z=4:9 m. Figure 2 shows simulated time series of surface elevations and
velocities at the two locations during the 10 s of the simulation period. The solid lines are
simulated results, while the dashed lines represent the analytical solutions. Co-ordinates of the
locations where comparison were made were also shown in the �gure. As can be seen from
Figure 2, simulated surface elevations at both locations agree well with analytical solutions.
Simulated horizontal and vertical velocities are almost the same as analytical solutions. The
wave period for the simulated oscillation is about 3:59 s, which is the same as that calculated
from the dispersion relationship.
The model was also run using the hydrostatic pressure assumption for this seiche oscillation

case. Figure 3 shows model results of the hydrostatic simulation. Again, solid lines are model
results and dashed lines are analytical solutions. Because non-hydrostatic e�ect is signi�cant,
the hydrostatic pressure assumption is obviously not valid here. As expected, simulated os-
cillation using hydrostatic pressure is di�erent from the analytical solution. As can be seen
from Figure 3, without taking the non-hydrostatic e�ect into account, an initially linear wave
becomes quite non-linear. High mode oscillation can be seen in simulated results, especially
near the middle of the basin. The wave period of the simulated �rst mode oscillation is
about 2 s, which is much shorter than the analytical solution of 3:59 s. The reason for a
shorter oscillation period is that the hydrostatic pressure assumption forces the wave period
to be T =L(gD)1=2 = 2:02 s.
Simulated velocity �elds at t=8 s for both the hydrostatic and fully hydrodynamic model

runs are illustrated in Figure 4. The top panel of Figure 4 shows the velocity distribution
with the consideration of the non-hydrostatic e�ects in the model run, while the bottom panel
shows that without considering the non-hydrostatic e�ects. Again, the two panels in the �gure
are signi�cantly di�erent, not only in terms of velocity magnitude, but also in terms of the
velocity direction. The fully hydrodynamic simulation predicts that water in the basin sloshes
to the right end of the basin at t=8 s. Nevertheless, the hydrostatic simulation predicts that
it sloshes to the left end of the basin.
The second model validation is a �nite amplitude seiche oscillation in a rectangular basin

that is �ve meters deep and ten meters long. The seiching is a second mode oscillation caused
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Figure 2. Simulated surface elevations and horizontal and vertical velocities (solid lines) including
non-hydrostatic pressure. Model results are compared with analytical solutions (dashed lines). The top
graph shows the surface elevation comparisons for x=0:1 and 5:5 m, while the middle and bottom

graphs show velocity comparisons at x=0:1, z=8:9 m and at x=5:5, z=4:9 m.

by a free-surface set-up at time=0 with the following sinusoidal form:

�=5+ a cos
(
2	x
l

)
(45)

where a=0:5 m. The �rst order solution for this problem is

�(x; t)=5 + a cos(!2t) cos(k2x) (46)

where

km=
m	
l
; !m=

√
kmg tanh(kmD) (47)
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Figure 3. Simulated surface elevations and horizontal and vertical velocities (solid lines) using the
hydrostatic assumption. Model results are compared with analytical solutions (dashed lines). The top
graph shows the surface elevation comparisons for x=0:1 and 5:5 m, while the middle and bottom

graphs show velocity comparisons at x=0:1, z=8:9 m and at x=5:5, z=4:9 m.

Because the wave amplitude is about 10 per cent of the water depth, the �rst order wave
alone is not su�cient. Wu and Eatlock Taylor [17] used the perturbation method to solve this
problem and obtained the second order solution. At the centre of the basin, the second order
surface elevation (the fourth mode oscillation) is

�2

(
l
2
; t
)
=
1
8g

[
2!22a

2 cos(2!2t) +
a2

!22
(k22g+!

4
2)−

a2

!22
(k22g+ 3!

4
2) cos(!4t)

]
(48)

In the model simulation, a total of 50 grid cells were used in the x-direction with a uniform
grid spacing of �x=0:2 m. In the vertical direction, 40 grid cells were used and the grid
spacing varied between 0.1 and 0:2m. The time step used was 0:05s. The model was run with

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:929–952



944 X. CHEN

t=8sec 20 cm/sec

t=8sec 20 cm/sec

(A)

(B)

Figure 4. Simulated velocity �elds at t=8 s. The top panel (A) shows model results
with the consideration of the non-hydrostatic e�ects, while the bottom panel (B)

shows model results without the non-hydrostatic e�ects.

and without the consideration of the non-hydrostatic pressure component. Figure 4 shows the
comparison of simulated surface elevation at the centre of the basin (solid line) with the �rst
order elevation (dashed line) and the sum of the �rst and second order elevations (circles). It is
clear that the model results are very close to the sum of the �rst and second order elevations.
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Figure 5. Simulated surface elevation at the centre of the basin versus the analytical solutions
to the second order. Non-hydrostatic pressure was included in the simulation.
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Figure 6. Simulated surface elevation at the centre of the basin versus the analytical solutions
to the second order. Non-hydrostatic pressure was not included in the simulation.

In the model simulation shown in Figure 5, non-hydrostatic pressure was included. If the
non-hydrostatic e�ect is excluded, model results will be totally di�erent from the analytical
solutions. Figure 6 shows simulated surface elevation at the centre of the basin without the
non-hydrostatic e�ects. Similar to the hydrostatic simulation in the last test case, model results
contain more non-linear components and the simulated �rst order wave has a wave period
which is shorter than what is calculated from Equation (47) by about 35 per cent.
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The next model test is a so-called lock-exchange problem. A rectangular basin with a
length of lx=0:4 cm and a depth of 0:18 m has a gate at the half length of the basin that
separates fresh water in the left half from salty water in the right half. At time¡0, the salinity
distribution was

c=

{
0; x6lx=2
4; x¿lx=2

(49)

where salinity (c) is in parts per thousand (ppt). At time=0, the gate is removed and water
starts to move under the baroclinic force caused by the horizontal density gradient.
A uniformly distributed grid system with �x=�z=0:01 m was used for the model sim-

ulation of this lock-exchange problem. The time step used was 0:1 s. Again, two model runs
were conducted: one used the hydrostatic pressure assumption and the other considered the
non-hydrostatic e�ects. Figure 7 shows simulated velocity �elds and salinity distributions with
the consideration of the non-hydrostatic e�ects in the simulation, while Figure 8 shows model
results without considering the non-hydrostatic e�ects. Both Figures 7 and 8 show model re-
sults at time=1:8 and 3:8s. Because of the localized horizontal density gradient in the vicinity
of the freshwater=salt water interface, the non-hydrostatic e�ect on the �ow is strong at and
near the interface. Obviously, the model produced di�erent velocity and salinity distributions
with and without the non-hydrostatic e�ects. While the simulated salinity distribution with the
hydrostatic assumption has a relatively sharp nose-shape front migrating from right to left, the
simulated freshwater=salt water interface without the hydrostatic assumption is much smoother.
The simulated salinity distributions shown in Figures 7 and 8 are similar to those in Casulli
and Stelling [5] for a similar lock-exchange case. From Simpson [20] and Turner [21], the
simulated interface without the hydrostatic assumption is more realistic, while the simulated
interface with the hydrostatic assumption is unreal.
The simulated velocity of the hydrostatic simulation is generally larger than that of non-

hydrostatic simulation, especially near the front where the water tends to move in the vertical
direction. This in turn prevents the relatively sharp nose losing its shape while moving to
the left side of the basin. Without considering the non-hydrostatic e�ects, simulated velocities
mainly occur within a distinct box that expends from the middle of the basin to the two
ends as time goes on. Outside the box, velocities are very small due to the lack of horizontal
pressure gradient because both the baroclinic and barotropic forces are negligible for these
areas. On the other hand, the simulated velocity �eld without the hydrostatic assumption does
not show a distinct box and the streamlines are elliptical. Even for areas where the baroclinic
e�ects have not yet reached, velocities are not minor. In fact, velocities in these area increases
as time goes on due to the cumulative e�ects of non-hydrostatic pressure.
The last test of the numerical scheme is a laboratory experiment of a non-linear wave

propagating over a bar towards a beach [18]. Cassulli and Stelling [5] tested their non-
hydrodynamic model using the same laboratory experiment. The experiment was performed
in a �ume with a length of 30 m and a water depth of 0:4 m (Figure 9). A sinusoidal wave
of 0:01 m with the period of 2:02 s propagates from the left end, over the bar, to the beach
at the right end with a slop of 0.04.
In the model simulation, the simulation domain was discretized using a uniformly distributed

grid system with the dimension of �x=�z=0:02m. The time step (�t) used for the simu-
lation was 0:04s. The model can automatically handle the wetting=drying situation at the right

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:929–952



3D HYDRODYNAMIC MODEL FOR FREE-SURFACE FLOWS 947

Salinity and Velocity Distributions

t = 1.8 sec

1 2 3
10 cm/sec

t = 3.8 sec

Figure 7. Simulated salinity and velocity distributions at t=1:8 s (top graph) and 3:8 s
(bottom graph) for the lock-exchange problem. The non-hydrostatic pressure component

was included in the model run. The white area has a salinity of 0 ppt.

end of the �ume using a method described in Reference [19]. The model was run both with
and without non-hydrostatic pressure. Figure 10 shows comparisons of simulated free-surface
elevations with measured data at A, B, C, and D with the consideration of non-hydrostatic
pressure. Although model results can still be improved, the agreement between simulated and
measured free-surface elevations at A, B, C, and D is much better than that without the
non-hydrostatic e�ects. As shown in Figure 11, the hydrostatic simulation generates incorrect
model results that are totally di�erent from measured data. Obviously, a hydrostatic scheme
won’t be able to simulate this steep wave case, while the non-hydrodynamic scheme presented
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Salinity and Velocity Distributions

t = 1.8 sec

1 2 3
10 cm/sec

t = 3.8 sec

Figure 8. Simulated salinity and velocity distributions at t=1:8 s (top graph) and 3:8 s (bottom
graph) for the lock-exchange problem. The non-hydrostatic pressure component was not included in the

model run. The white area has a salinity of 0 ppt.

in this paper has the ability to simulate such a complex wave propagating problem, which is
normally simulated using Boussinesq equation models [18].

5. CONCLUSIONS

A three-dimensional, non-hydrostatic model has been developed. The model solves the RANS
equations using a �nite di�erence scheme that contains two predictor–corrector steps. In the
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Figure 9. The geometry of the �ume used to conduct a laboratory experiment of non-linear wave
propagating over a bar toward a beach. The water depth decreases from 0:4m at A to 0:1m at B. The
slope at the right end is 0.04. The water surface elevations measured include those at Stations A, B,

C, and D located 2, 13.5, 15.7, and 19 m away from the open boundary, respectively.

�rst predictor–corrector step, the model uses the hydrostatic pressure at the previous time
step as an initial estimate of the pressure �eld to calculate an intermediate velocity �eld. The
estimated pressure �eld is corrected by adding the non-hydrostatic component. An elliptic
equation for non-hydrostatic pressure is obtained by forcing the velocity �eld to satisfy the
continuity equation for incompressible �ows. After the non-hydrostatic pressure component is
solved, a second intermediate velocity �eld is found, with which an intermediate free surface
can be calculated. In the second predictor–corrector step, a FSC method is used to �nd the
�nal free surface, before the second intermediate velocity �eld is further corrected to obtain
the �nal solutions.
It can be clearly seen that the numerical scheme presented will be reduced to an explicit

hydrostatic model if the two predictor–corrector steps are omitted. In this case, the �rst in-
termediate velocity �eld is treated as the �nal velocity �eld and is used to calculate the �nal
free-surface elevation at the (n + 1)th time step. If the �rst predictor–corrector step only is
omitted, then the model is a semi-implicit hydrostatic model using the FSC method [15].
Therefore, the numerical scheme presented in this paper can be easily incorporated in exist-
ing hydrostatic models, even if they are explicit models. The solution procedure presented
is di�erent from some other non-hydrostatic models [4–6; 8] that calculate the free surface
before non-hydrostatic pressure is solved. Instead, in the numerical procedure presented, the
location of the free surface is found after non-hydrostatic pressure at the new time step is
calculated. In other words, the calculated free-surface change over the time step (�t) contains
the non-hydrostatic e�ects in the numerical scheme presented.
The numerical scheme has been tested with several analytical solutions and laboratory

experiments. In the four test cases presented, non-hydrostatic e�ects are important and cannot
be neglected. As can be seen from the comparisons of model results with analytical solutions or
laboratory data, the four test cases cannot be simulated without considering the non-hydrostatic
e�ects. With the consideration of the non-hydrostatic e�ects, however, the numerical scheme
presented is able to generate satisfactory model results. The comparisons to the two analytical
solutions are good. For the lock-exchange case and the laboratory experiment of a non-linear
wave propagating over a bar, although no analytical solutions are available, model results
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Figure 10. Comparison of simulated and measured surface elevations at A, B, C, and D with measured
data. Non-hydrostatic pressure was included in the simulation.
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Figure 11. Comparison of simulated and measured surface elevations at A, B, C, and D with measured
data. Non-hydrostatic pressure was not included in the simulation.
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are similar to those in Casulli and Stelling [4] and agree fairly well with what was found
in the laboratory. The four tests presented in the paper suggest that the proposed numerical
method is suitable for simulating free-surface �ows where the non-hydrostatic e�ects are
important.
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